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AIMS OF THE PROJECT 

Our aim, within the bounds of the Early Crustal Genesis Project, was the isotopic and 

chemical study of selected early crustal (meta)-sedimentary rocks. This was undertaken 

for two main reasons: firstly, until recently, most early Archean rocks so studied 

comprised gneisses of mafic and granitic composition, generally of high metamorphic grade, 

and sampled mainly from greenstone belts. Secondly, and more importantly, sediments 

and sedimentary processes are one of the most important pathways for the production of 

early upper+rustal chemical heterogeneities. Subsequent partial melting of 

metasediments, following high-grade metamorphism, leads to selective remixing of 

certain elements back into the earth's crust, leaving behind chemically complementary 

residuals. 

Our understanding of the chemical evolution of the earth's early crust cannot be 

complete until we take into account the chemical evidence contained within the oldest 

(meta)sedimentary rocks and the geochemical constraints these place on our models of 

crust-forming processes. 

We chose Western Australia as our first field area to examine, as the Yilgarn and 

Pilbara Blocks comprise one of the largest and most varied Precambrian terranes. Until 

recently, these areas had not been investigated with the more modern isotopic techniques. 

Furthermore, the Western Gneiss Terrane (on the western flank of the Yilgarn Block) and 

the Pilbara Block are both non-greenstone in character; these types of terranes have been 

relatively neglected, but are of great significance in our understanding of early crustal 

met asediment s. 

To focus our efforts even further, we initially chose to examine (meta)sediments of 

aluminous or peraluminous character, commonly also enriched in Mg and/or Fe relative to 
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the more common pelitic metasediments, and at many localities, deficient in one or more of 

the elements Ca, Na, and K. 

Work Statement 

Aluminous metasedirnents and granitic gneisses of Western Australia 

The project commenced with a 5O-day field trip to the Yilgarn Block, Western 

Australia, by the Co-investigator S.K. Dobos in September and October of 1984. He 

collected over 400 samples, principally Archean metasediments, but including field-related 

gneisses and mafic rocks. Much of this material comprises diamond-drill core, which 

ensures unweathered samples for isotopic analysis; this is important since in many localities 

surface outcrops are too weathered for such work. (Although all the core is proprietary, we 

have unrestricted use of them, with freedom to publish any data derived therefrom.) 

Of particular concern to the panel prior to the field trip was the possible conflict of 

interest with Australian groups carrying out similar work, and/or working in the same field 

areas. Prior to the field trip, we contacted the Western Australian Geological Survey, the 

Western Australian Institute of Technology isotope geochemistry group, and the 

Australian National University isotope geochemistry group. The directors/group leaders of 

all three welcomed our presence, and were very helpful to the Co-investigator on-site. 

Our correspondence in this matter is on file with NASA. 

The samples collected during the 1984 field trip have been augmented by others 

collected in 1987 from Western Australia and the Northern Territory (the latter funded by 

Harvard University). The combined collection is now a valuable resource in the 

Department of Earth and Planetary Sciences, with ample first-class material for numerous 

isotopic and geochemical studies of both clastic and chemical early crustal sediments. 

The main thrust of NAG 9-90 is the study of early crustal metasediments, with special 
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attention to peraluminous rocks, or rocks low in Ca and alkalis. We have concentrated our 

efforts on the Western Gneiss Belt of Western Australia for reasons already discussed. The 

progress of this work has been satisfactory, but the wri teup has been delayed by the move 

of the Co-investigator to Australia for personal reasons. A very rough draft of a paper on 

these results is given in the Appendix to this report (Dobos et al., in preparation). We 

have also commenced a complementary paper on the major and t racelement  

geochemistry of these metasediments. On completion of this second manuscript, we intend 

to examine similar rocks from elsewhere in the Yilgarn Block, and from other Archean 

terranes in Australia. 

Banded iron formations 

During the 1984 field trip, the Co-investigator also collected metamorphosed banded 

iron formations and related rocks from the Yilgarn Block. Since the geologic setting of 

these rocks differs widely from those in the volumetrically more significant "basin-like" 

iron-rich sequences like the Pilbara Block, their isotopic signatures will help to constrain 

the Sm-Nd systematics of Fe-rich sediments in the early crust. 

Our work on banded iron formations was started with NSF funds and the work was 

continued with funds from NAG-9-90. This work (Jacobsen and Pimentel-Klose, 

1988a,b) shows that REE budget of the Archean oceans was dominated by hydrothermal 

circulation through mid-ocean ridges rather than by continental weathering as is the case 

in the Phanerozoic. 

Early crustal clastic sediments of West Greenland 

Most of this work was funded by NSF, but the final stages were finished with NASA 

support through NAG-9-90 and the NASA/NSF sponsored field trip to the early Archean 



of West Greenland during the summer of 1986. One paper on the clastic sediments at Isua 

has been published (Jacobsen and Dymek, 1988), and suggests the presence of pre-3.8 Ga 

components in the Isua metasediments. Another paper on the late Archean metasediments 

of Rypeo is in preparation. 

River waters draining Archean terranes 

We collected selected Australian, Canadian and Greenland river waters for Sm-Nd and 

Rb-Sr isotopic analysis and REE analysis of dissolved and suspended river loads draining 

Archean areas. The isotopic data from these samples have been reported in papers 

emphasizing the present day river and ocean systems (Goldstein and Jacobsen, 1987, 

1988a,b,c) and were primarily funded by NSF. However, the sample collection of rivers 

draining Archean areas was done during NASA sponsored field work. These data are 

important for calculating "average" signatures of Archean terranes, and for large-scale 

modeling of crustal evolution through time. Such modeling with these data is in progress. 

Fiskenaesset anorthosite and aluminous metasediments 

A Sm-Nd isotopic study was carried out on samples of the Fiskenaesset Anorthosite 

(Ashwal et al. in prep.) to constrain the igneous age of the Fiskenaesset Anorthosite. The 

age obtained was 2.86 * 0.05 Ga and most likely represents the igneous crystallization age 

of the Fiskenaesset complex. This is an important constraint on the age of the aluminous 

metasediments at Fiskenaesset which we are currently studying. 

Modeling o fcrustal growth and recycling 

The available data on chemical and clastic sediments throughout earth history and 

continental crustal age distributions have been used to obtain improved estimates of 
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crustal growth and recycling rates throughout earth history (Jacobsen, 1988). The results 

suggest that by about 3.8 Ga ago M 40 % of the present continental volume was present. 

Recycling rates were extremely high 3-4 Ga ago and declined rapidly to an insignificant 

value of 0.1 km /a during most of the Phanerozoic. The Nd model age pattern on 3 

sediments suggests a fairly high rate of growth during the Phanerozoic. 

Publicat ions 

The following list comprises all the manuscripts which were produced wholly, or in 

part, with the help of NAG 9-90, 

Ashwal, L.D., Jacobsen, S.B., Myers, J.S., Kalsbeek, F., and Goldstein, S.J., Sm-Nd age of 

the Fiskenaesset Anorthosite Complex, West Greenland, (in preparation). 

Dobos, S.K., Jacobsen, S.B., Derry, L.A. and Goldstein, S.J., Nd and Sr isotope 

systematics of aluminous metasediments from the Archean of Western Australia: 1. 

The Western Gneiss Belt of the Yilgarn Block, (in preparation). 

Goldstein, S.J. and Jacobsen, S.B., 1987: The Nd and Sr isotopic systematics of 

river-water dissolved material: Implications for the sources of Nd and Sr in seawater, 

Chem. Geol. (Isotope Geoscience Section) 66, 245-272. 

Goldstein, S.J. and Jacobsen, S.B., 1988a: Nd and Sr systematics of river water suspended 

material: Implications for crustal evolution. Earth Planet. Sci. Lett. 87, 

249-265. 

Goldstein, S.J. and Jacobsen, S.B., 1988b: Rare earth elements in river waters, in press, 

Earth Planet. Sci. Lett. (in press). 

Goldstein, S.J. and Jacobsen, S.B., 1988c: REE in the Great Whale River estuary, NW 

Quebec. Earth Planet. Sci. Lett. (in press). 

Jacobsen, S.B. and Dymek, R.F., 1988: Nd and Sr isotope systematics of clastic 
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metasediments from Isua, West Greenland: Identification of Pre-3.8 Ga differentiated 

crustal components. J. Geophys. Res. 93, 338-354. 

Jacobsen, S.B. and Pimentel-Klose, M.R., 1988a: A Nd isotopic study of the Hamersley 

and Michipicoten banded iron formations: The source of REE and Fe in Archean 

oceans. Earth Planet. Sci. Lett. 87, 2944. 

Jacobsen, S.B. and Pimentel-Klose, M.R., 1988b: Nd isotopic variations in 

Precambrian banded iron formations. Geophys. Res. Lett. 15, 393-396. 

Jacobsen, S.B. 1988: Isotopic constraints on crustal growth and recycling, Earth Planet. 

Sci. Lett ., Crafoord Symposium Volume (in press). 
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Abstract 

The Western Gneiss Belt (WGB) is an elongate, high-grade non-greenstone terrane 

bounding the western edge of the Yilgarn Block. An upper greenschist shale-like unit from 

the Jack Hills area (TsTRAT = 2.9 Ga) in the northern part of the WGB yields an initial 

ENd(T) = -5, TDM = 3.61 Ga, and l':; = 3.56 Ga. The other metasediments occur 

south and west of the above unit, increasing in metamorphic grade from amphibolite facies 

at Koolanooka and Toodyay to granulite facies at Quirading, near the southern extremity 

of the WGB. The majority of the samples from these localities define an Sm-Nd isochron 

with T = 3.16 Ga and ENd(T) = -0 .4  f 0.8; TDM model ages of these are about 3.4 Ga. 

Rb-Sr data define a broad trend bounded by T&, from 3.25 to 2.67 Ga, but clustering 

towards the latter. Hence 3.16 Ga may reflect the age of the source rocks rather than the 

sedimentation or metamorphism which must have been completed by 2.67 Ga. Pelitic 

rocks have close to average crustal fsm/Nd of -0 .4,  while more chemically evolved 

nietasediments have a large range from about -0.5 to 0; in general, there is no systematic 

difference between these in initid EN& and they reflect broadly similar source terranes. 

An older group of granitoid gneisses enclosing or adjacent to the metasediments at 

Toodyay and Quirading yield TDM model ages of about 3.4 Ga, while a younger group of 

granitic rocks yields TDM model ages in the range 3.1 to 3.3 Ga. 

Nd 

Nd 

N d  

Nd 

REE patterns of shale-like clastic metasediments closely follow that for North 

American Shale Composite (NASC), and are substantially different from "Archean Shale" 

of McLennan and Taylor (1984). Chemically more evolved alkali and calcium poor 

metasediments exhibit extreme REE variability. 
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1. Introduction 

Isotopic and geochronologic evidence indicates that by the beginning of the 

Proterozoic, M 2.5 Ga ago, the continental crust was at least half its present volume. Since 

that time, little if any large-scale changes in the chemical composition of the sedimentary 

rocks have been observed. This infers a relatively constant upper crust composition since 

the Archean, or at least variations small enough to have been masked or buffered by 

sedimentary recycling and slow crustal growth. In marked contrast, both crustal growth 

and recycling rates appear to have been much higher in the period 3.8 to 2.8 Ga. 

Sediments from this period frequently differ in composition from those formed since the 

Archean, indicating that many Archean sediments were derived from an initially less 

differentiated [more mafic] and relatively rapidly evolving Archean crust. 

Many fundamental questions remain concerning the timing, mechanisins, and 

chemical fluxes involved in this early crustal genesis; these are pertinent to our 

understanding of planetary evolution. As a starting point, we need to know whether the 

[currently] oldest terrestrial minerals, dated at  4.2 Ga, and the oldest rocks, dated at  3.8 

Ga, are indeed the oldest samples preserved or whether even older material was extant, but 

destroyed either by late heavy bombardment or by vigorous recycling of the early crust. 

We need to know the compositions of the earliest rocks and their "protoliths", the 

mechanism of crustal recycling and the values of the chemical fluxes which accompanied it, 

all as functions of time. Clearly the best source of hard data for understanding early crustal 

genesis is the study of early crustal rocks. 

Our initial aims in studying the Western Gneiss Terrain (WGT) were to determine 

the provenance of the (meta) sediments, especially the high-Al, high-Mg, low-alkali and 

low-Ca (HAMLAC) metasediments; to determine age relations and provenance of the 
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various granitic gneisses common throughout the WGT, and to determine temporal and 

chemical relations between the metasediments and the granitic and mafic/ultramafic 

metaigneous rocks. HAMLAC metasediments are relatively common in the Archean and 

Early Proterozoic, and relatively rare in the Phanerozoic. Another intent is to define the 

age distribution of crustal rocks in the Yilgarn and Pilbara blocks in terms of their "crustal 

extraction ages". Crustal residence ages of sediments will be used to  constrain crustal 

evolution in these Archean crustal blocks. Further studies of chemical and clastic 

sediments in these areas should also constrain their interactions with the early ocean 

atmosphere system. 

2. Geological setting 

The Western Gneiss Terrain (WGT), of the Yilgarn Block is relatively rich in a 

wide range of Archean metasediments; the lithofacies is commonly shallow water marine, 

indicative of stable shelf condition. The WGT contrasts strongly with granitic-greenstone 

provinces to the east (Fig. 1); additionally it is becoming more generally accepted that the 

WGT is the depositional basement of the younger, eastern provinces of the Yilgarn Block 

[l]. Our samples from this terrain are from the Jack Hills and Koolanooka in the northern 

part of the WGT, and from Toodyay and Quirading, in the southern part of the WGT. 

This yields not only a good geographic spread, but an almost full range of metamorphic 

grades ranging from lower amphibolite at Koolanooka to granulite at Quirading. 

3. Sample descriptions 

3.1. Jack Hills sample. 

#lo  [JHl] fine-grained, slightly crenulated chloritegarnet-chloritoid-sericite 

quartzite; quartz comprises some 75% of the rock. 
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3.2. Koolanooka samples 

The samples are from a sequence of lower-amphibolite grade quartzites and 

quartz-magnetite rocks (metamorphosed iron formation), normal pelitic met asediments, 

iron-rich metashales, thinly bedded siliceous volcaniclastics, and a rich assortment of 

assemblages corresponding to high-Al, high-Fe and/or Mg, low Ca and low-alkali bulk 

compositions. The sequence contains numerous mafic bands ranging from 1/2 to 10 meters 

in thickness; it is not possible to interpret from the field relations alone which of these 

were volcaniclastic mafic tuffs and which were flows or sills; detailed petrographic work 

indicates that some of the thinner units were probably tuffaceous. Sample #1 is an 

example of the latter - it is a garnet~hlorite-cordieriteorthoamphibol~uartz-magnetite 

schist which occurs on a regional scale throughout the sequence in units from 10 cm to 

several meters thick. Sample #2 is a more normal pelitic meta-sediment comprising 

quartz-biotite-cordierite-plagioclase, occurring in similarly bedded units. 

3.3. Toodyay samples. 

Young Granitic Gneiss: #11 [TY30] A gneissic biotite granite, moderate grain size, 

with large elongated quartz grains and grain aggregates; unaltered. 

#12 [TY31] A finegrained, gneissic biotite-hornblende microgranite; minor 

alteration of mafic minerals to chlorite. 

Old Granitic Gneiss: #17 [TY2] A finegrained, deformed leucogranite with minor 

biotite, and trace amounts of chlorite, fresh muscovite, epidote, and magnetite altering to 

hematite. The occurrence of fresh muscovite and epidote, plus the deformed texture 

comprising well developed curviplanar grain boundaries strongly suggests that this rock has 
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been metamorphosed after cry st allizat ion. 

Metasediments: #13 [TY17b] A coarse-grained cordieriteanthophyllite gneiss with 

minor biotite and traces of quartz and apatite. This rock is extensively altered along grain 

boundaries to fine aggregates of sericite; otherwise, the cordierite is quite fresh. 

#14 [TY 11 A fine-grained spinel-magnetiteorthopyroxeneorthoamphibole rock 

with well-developed alteration patches of sericite after cordierite; the texture is quite 

granulitic . 
#15 [TY3] A coarse-grained orthopyroxene spinel rock with minor anthophyllite 

and cordierite altering to pyrophyllite and lesser amounts of chlorite along grain 

boundaries; there appears to be some trace high-grade chlorite; minor magnetite in 

patches. 

#16 [TY26] A coarse-grained magnetitsordieritshloritebiotite rock with 

minor apatite and epidote or allanite in clusters scattered through the rock. The chlorite is 

strongly magnesian, and it is primary. The cordierite is entirely altered to sericite and 

trace secondary chlorite (the latter very fine-grained). 

#18 [TY 101 A coarse chlori te-gedri te-bioti te-cordierite-magnetite rock, with 

trace amounts of clinozoisite. The chlorite is primary and magnesian; the cordierite occurs 

in clusters of fresh grains with cores of magnetite; it is only slightly altered to sericite at 

the edges of the clusters. 

3.4 Quirading samples 

The Quirading area is in the southern part of the WGT, and is of high metamorphic 

grade (granulite facies). The locality is predominantly gneissic, with field evidence of a 

younger, somewhat less deformed granitic gneiss. The older gneiss carries deformed, 

non-continuous belts and lenses of chiefly aluminous and exotic metasediments, and mafic 
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and ultramafic granulites - outcrop is poor, and we have not seen any convincing 

evidence that the younger gneisses cut the metasediments and mafic granulites, though the 

limited field relations suggest that they should cut at least the metasediments. 

Old Granitic Gneiss: Sample #3 [QB] is a 2 feldsparsquartz-biotite rock with 

alteration clots after orthopyroxene. 

Young Granitic Gneiss: #4 [Ql] is a 2 feldsparsquartz-biotite rock, with minor 

orthopyroxene still preserved. From this we conclude that the granulite facies 

metamorphism can be no older than this young gneiss (both the old and the young gneisses 

can be equally labelled as charnockites). 

#19 

#21 

M u j c  rocks: Sample #6 is a 2 pyroxene-hornblende granulite (hornblende 

pyroxenite) with essentially no felsic minerals - it is ultramafic, with a composition that 

does not correspond to any common mafic igneous rock; we conclude that the protolith was 

probably a chemically altered mafic igneous rock prior to metamorphism. Sample #7 is a 

2 pyroxene-pla.gioclase-minor biotite granulite with a composition similar to that of alkali 

basalts. 

Metusediments: Sample #5 [Q12] is a cordieritequartzathopyroxene granulite 

with trace amounts of biotite. This is a high-Al, low-Ca, low-alkali metasediment 

(varieties with much more biotite, corresponding to more normal pelitic metasediments 

have also been collected). Sample #S [QlO] is an extremely Al-rich (altered) 

sapphirine-spinel-phlogopite nodule from a phlogopite- spinel-sapphirine-orthopyroxene 

granulite apparently flanking a narrow unit of hornblende pyroxenite; it was chosen for 

analysis not only because of its extreme composition, but also on the premise that it would 

be REE enriched. 
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#9 

#22 

#23 

Young Mafic Dyke: #20. 

4. Analytical procedures 

Chemical separations were carried out with the procedures described by Jacobsen 

and Dymek [2]. The samples were spiked with 147Sm, 150Nd, 84Sr and 87Rb tracers. 

Spike equilibration with the sample was accomplished in TFE lined stainless steel bombs at 

190°C using a mixture of HF, HN03, HC1 and HC104. The REE and Rb and Sr were 

separated with a cation exchange column, using 2.5 and 4.0 N HC1 as elutant. Sm and Nd 

were then separated from Ba and other REE using 0.2 M 2-methyllactic acid as elutant. 

Total chemistry blanks for Sr were 100 pg and for Nd E: 30 pg. 

Mass spectrometric measurements were made on the Harvard VG Isomass 54 mass 

spectrometer. Sr was loaded in phosphoric acid on an oxidized Ta single filament. Nd was 

loaded on a Re single filament as chloride and run as NdO'. Sm was run as Sm on a Re 

or Ta single filament. We measured 87Sr/86Sr = 0.71025*2 for the NBS 987 Sr standard; 

143Nd/144Nd = 0.511130*10 for the Caltech Nd Beta standard of Wasserburg et al. [3]; 

and 143Nd/144Nd = 0.511847*10 for the USGS standard rock BCR-1. Weighted linear 

least squares fits to obtain isochron parameters were performed using the method of 

Williamson [4]. 

+ 

5. Results 

5.1. Rare earth element (REE) patterns 

REE patterns of two "normal" pelitic metasediments (#2 and #lo) and two 
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HAMLAC metasediments (#1 and # 5 )  are given in Table 4 and chondrite-normalized 

patterns are shown in Figs. 2 and 3, respectively. For comparison, the North American 

Shale Composite (NASC) REE pattern [5] typical of post-Archean shales is shown for 

comparison. Also shown is the average Archean shale REE pattern of Taylor and 

McLennan [6]. As shown the two "normal" metasediments of the WGB resemble the 

NASC pattern more in their LREE enrichment than the Archean shale values of Taylor 

and McLennan [6]. There is now an increasing amount of REE data on shales that suggest 

that there are no clear systematic differences between normal Archean shale REE patterns 

and post-Archean patterns. The apparent difference is probably because most of Taylor 

and McLennan's Archean shale values were based on greenstone belt shales. In contrast, 

the REI: patterns of the two HAMLAC metasediments from the WGB (Fig. 3) do not 

resemble either Archean or post-Archean averages and probably were substantially 

fractionated relative to their crustal sources. 

5.2. Model age relationships 

Model ages TCHUR N d  can be calculated relative to the bulk Earth or CHUR curve 

(cf. [7-91) and correspond to the time in the past when the 143Nd/144Nd in the sample 

coincided with the 143Nd/144Nd in the bulk Earth reservoir. It has however been shown 

by Jacobsen and Wasserburg [9] and many subsequent studies that a depleted reservoir has 

existed in the mantle (DM) throughout most of Earth history. It has therefore become 

common practice to calculate Nd model ages (T!:) relative to such a depleted reservoir 

(cf. [lo]) rather than the bulk earth reservoir. These depleted mantle model ages have also 

been called "crustal residence ages" in the same sense as McCulloch and Wasserburg [8] 

ages as "provenance ages". Although the detailed evolution curve for such a used T~~~~ 
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depleted mantle reservoir is not well known at present, a common approximation is to 

assume that it is linear starting with ENd = 0 at 4.55 Ga and evolving to  +lo  for today 

(Le. the value observed in present day MORBs). For most clastic sediments such a single 

stage model age generally yields a good estimate of the average time of separation of their 

continental sources from the mantle source (i.e. the mean age of the continental source). 

The single stage Nd model age is given by: 

where XSm = 6.54 x 10 -12a-', ( 147s~/144Nd)iM = 0.2136 and (143Nd/144Nd)zM = 

0.512359 (assuming a linear DM evolution). 

For Rb-Sr, the bulk Earth reference reservoir is called UR, and the Rb-Sr model 

age relative to the bulk earth is given by: 

-'la-', (s7Rb/ 86 S')UR o = 0.0827 and (87Sr/86sr);R = 0.7045. A 

depleted mantle reference reservoir for Sr yields model ages that are essentially identical to 

UR model ages for the samples discussed here and are therefore not considered further. 

Clastic sediments normally have much higher Rb/Sr ratios than their source rocks, thus 

T& ages usually are expected to be closer to the time of sedimentation than to the mean 

age of the source rocks. 

where XRb = 1.42 x 10 

For chemical sediments, a two-stage Nd model age, T2DM, Nd is appropriate for 
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estimating the mean age of the continental sources of Nd since they are commonly 

fractionated relative to their continental sources at the time of deposition. The two-stage 

model can be obtained from the single stage T!: model age by the equation: 

where fcc = -0.45 and fDM = 0.08529 are the fsm/Nd values of average crust and depleted 

mantle respectively. The twostage model age corrects for Sm/Nd fractionation at  the time 

of deposition of a chemical sediment and should give a better estimate of the mean age of 

the sources of Nd in HAMLAC sediments that have fsm/Nd values very different from 

-0.45. 

The Sm-Nd and Rb-Sr isotopic results are presented in Table 1-3 and Figs. 4-9. 

Model ages TUR versus TE: are shown in Fig 4. We note that only a couple of the 

samples plot close to  the TUR = TDM line. Most of the samples have younger Sr model 

ages than Nd model ages the exceptions are to granulite facies sample of the young granitic 

gneiss at Quirading and one sample of old granitic gneiss at Toodyay. The young granitic 

gneisses at Quirading may have anomalously high Sr model ages due to Rb loss during 

granulite facies metamorphism. Most of the samples have lower Sr than Nd model ages. 

In general large Rb/Sr fractionations occur during partial melting in the crust to form 

granitic rocks or during formation of sediments while only insignificant Sm/Nd 

fractionations occur during these processes. 

S r  

Jack Hills: The metapelite sample from this locations yield M 3.6 Ga nd and Sr 

model ages indicating that the source rocks of these sediments are as old as the oldest 

basement rocks exposed in the WGB around Mt. Narryer. 

Ihdunooku: Sample #1 is relatively unfractionated with respect to Sm/Nd, and 
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yields a TDM model age of x 3.9 Ga. As shown by the REE pattern for this sample it is 

clearly strongly fractionated from average crustal source rocks. This may indicate Sm/Nd 

fractionation during sediment formation rather than an unusual protolit h. Sample #2 

yield Nd model age of about 3.4 Ga; this sample has a typical shale REE pattern and this 

model age may yield a more true age for the source rocks of the Koolanooka sediments. Sr 

model ages for these samples are both in the range 2.5-2.7 Ga suggesting that this may be 

close to the time of sedimentation and/or metamorphism at Koolanooka.. 

Toodyay: The old granitic gneisses at Toodyay yield both Sr and Nd model ages in 

the range 3.3-3.6 Ga. The young granitic gneisses at Toodyay yield Sr model ages of about 

2.-2.7 Ga while their Nd model ages are about 3.2 Ga. This suggest that these granitic 

rocks may have formed by partial melting of crust older than z 3.2 Ga at about 2.6 Ga ago. 

HAMLAC sediments from Toodyay yield Sr model ages of z 2.5 Ga, but Nd model ages in 

the range 3.4-3.5 Ga. This indicates very old crustal sources also for these sediment, while 

their time of sedimentation may be as young as 2.5 Ga. 

Quirading: Old granitic gneiss from this location yield both Sr and Nd model age of 

z 3.5 Ga suggesting the presence of very ancient gneisses here. The young granitic gneisses 

at Quirading also yield old Sr model ages in the range 3.0-3.6 Ga, while these yield Nd 

model ages of about 3.2 Ga. The HAMLAC sediments from Quirading yield Nd model ages 

in the range 3.3 -3.5 Ga, while their Sr model ages are in the range 2.6-3.1 Ga. This 

suggests also very old sources for these sediments, however their time of deposition is likely 

to be younger than 3.0 Ga. 

5.3 Age constraints 

The time of deposition of the Jack Hills metasediment has been dated by U-Pb on 

zircons to 2.9 0.2 Ga [13]. The other metasediments are constrained to have been 
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deposited during the time from N 2.67 Ga to 3.4 Ga ago [14]. The younger granitic rocks at 

Toodyay yielded U-Pb and Rb-Sr ages of 2.67 f 0.05 Ga. The older granitic rocks appear 

from previous reports to be constrained by Rb-Sr and U-Pb to an age of 3.25 f 0.07 Ga 

~ 4 1 .  

5.4 Isochron Relationships 

The Sm-Nd data of the older granitic and mafic gneisses are shown in Fig. 5. All 

the data are shown relative to a TCHUR reference line of 3.25 Ga. A weighted least 

squares fit to all the data yield T = 3.29 f 0.32 Ga and an initial ENd = +1.8 f 4.2. The 

data on the granitic samples yield T = 3.61 f 0.42 Ga and ENd = 6.3 f 6.0. The data can 

be compared to an age of 3 3.25 Ga constrained by Rb-Sr and U-Pb. McCulloch et al. 

[12] obtained a T = 3.21 Ga Sm-Nd isochron for the Toodyay-Northern gneisses. The Mt. 

Narryer data of deLaeter et al. [15] are shown for comparison. They clearly plot below the 

main trend in the data presented here for a larger part of the WGB and suggest that most 

of the gneisses in the WGB are some 0.2-0.4 Ga younger than the hlt. Narryer gneisses. 

The Sm-Nd data of the younger granitic rocks of the WGB are shown in Fig. 6. The 

data are shown relative to a TCHUR = 2.67 Ga reference line; the age suggested by U-Pb 

and Rb-Sr ages on these young granites. However, a weighted least squares fit to the data 

yield a poorly defined isochron of T = 3.37 f 0.42 Ga with initial ENd of +5.3 f 5.7. This 

old age suggests that these young granites (3 2.7 Ga) were formed by melting of much older 

(>3.2 Ga) continental crust. 

The Sm-Nd data of the WGB metasediments are shown in Fig. 7. A least squares 

fit to the sediment data yield T = 3.16 f 0.07 Ga and ENd = - 0 . 4  f 0.8, excluding two 

data points that are clearly far off the best fit line (the sapphirine nodule #8 and a 

chlorite-rich metasediment #18). Since this age most likely reflect source rock ages rather 
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than deposition ages, this suggests that the time of deposition is 3.16 Ga or younger. The 

origin of the sapphirine nodule is problematic: if its isotopic signature is primary, and not 

affected by the alteration, and if it is x 3.2 Ga old, then its protolith then had to have a 

substantially positive ENd of x +4. This would allow its derivation by weathering of a 

depleted mafic/ultramafic rock - but in the process a high REE enrichment would have 

to have taken place. We infer that the metasediments may have sources that are’in the 

range 3.1-3.6 Ga old while the Rb/Sr data discussed below suggest that their time of 

deposition is in the range 2.6-2.9 Ga. 

The Rb-Sr data of the WGB sediments and older/younger granitic rocks are shown 

in Figs. 8 and 9. The Rb-Sr data show a wide scatter in the Rb-Sr isochron diagram, but 

mostly the data plot between T Z i  reference lines of N 2.67 Ga and 3.25 Ga. Most of the 

samples with very high Rb/Sr ratios are metasediments that plot close to the TUR = 2.67 

Ga reference line suggesting that the time of deposition of these sediments is close to this 

age. While Sm/Nd data for the Koolanooka samples indicate that their source rocks are 

>3.0 Ga, Rb/Sr data of Arriens [ll] on surrounding gneisses, granitoids and quartz 

porphyries suggest that their ages are x 2.5 Ga. 

S r  

6. Discussion 

Synthesizing our Sm/Nd data thus far we conclude that: 

(i) Major crust formation took place in the WGT at about 3.2 Ga, producing both 

(para???) gneisses and (meta) sediments, derived from an ENd = O source not older than 

3.4 Ga. 

(ii) the high-A1 and other clastic sediments yield no evidence for a much older continental 

source. While highly positive and negative ENd values may occur, typical values are in the 

range -6 to -4, substantially lower than those of contemporaneous chemical sediments. 
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(iii) a younger suite of granitic and other igneous rocks was emplaced throughout the 

WGT between 2.7 and 3.0 Ga, but was largely derived from older rocks. 

(iv) the metamorphic grades preserved regionally increase from north to south in the 

WGT. 

(v) this regional metamorphism can be no older than the emplacement of the younger 

granitic rocks. 

Acknowledgments: This work was funded by NASA grant NAG 9-90. 
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TABLE 1. 
Sm-Nd analytical results for the Western Gneiss Belt 

Koolanooka - Fe-, Mg- and Al-rich metasediments 
0.51 1551*15 #1 2.238 7.398 0.18290 

#2 4.713 24.94 0.11425 0.5 1012 1 *27 

Quirading - granitic gneisses 
#3 7.509 44.76 0.10142 0.509799*43 
#4 4.698 27.14 0.10467 0.5 101 19*36 

#19 2.076 12.51 0.10032 0.509925*28 
#21 0.766 5.127 0.09033 0.509785*18 

Quirading - mafic and dyke rocks 
#6 3.767 19.00 0.11989 0.5 10429*19 
#7 1.454 6.108 0.14393 0.5 10664*23 

#20 8.631 39.97 0.1306 1 0.511542*23 

Quirading - Fe-, Mg- and Al-rich metasediments 
#5 1.317 6.593 0.12076 0.510289i64 
#9 8.550 41.62 0.12422 0.5 10308* 18 

#22 28.05 147.8 0.11474 0.510190*32 
#23 7.101 35.16 0.12213 0.5 10266*25 
#8 16.58 99.64 0.10059 0.509983*32 

Jack Hills - Fe- and Al-rich metasediment 
# lo  6.012 30.59 0.11886 0.510094* 7 

Toodyay - granitic gneisses 
#11 11.07 83.70 0.07997 0.509552i22 
#12 5.217 37.59 0.08389 0.50954 3* 13 
#17 2.061 13.92 0.08958 0.509603*14 

Toodyay - Fe-, Mg- and Al-rich metasediments 
#13 3.645 18.02 0.12232 0.51024 1*12 
#14 23.58 167.7 0.08497 0.509495* 7 
#15 13.50 87.79 0.09299 0.509642*28 
#16 1.747 8.602 0.12278 0.510275*18 
# lS  2.066 6.447 0.19384 0.51 1539*11 

- 5.78*0.29 
-33.72i0.53 

-40.01*0.84 

-40.29*0.35 

-33.76i0.7 1 
-37.55*0.55 

-27.70h0.37 
-23.11*0.46 
- 5.96*0.45 

-30.44 * 1.2 5 
-30.07*0.35 
-32.37rt0.63 
-30.89*0.49 
-36.42*0.63 

-34.25*0.14 

-44.84i0.43 
-45.0B0.26 
-43.84~0.27 

-31.38*0.24 
-45.95i0.14 
-43.08*0.55 
-30.7 1 *O .35 
- 6.02*0.22 

Reported errors are 2a  of the mean. 
Uncertainty is less than 0.1%. 
Corrected for mass fractionation using 146Nd/142Nd = 0.636151. 
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Koolanooka - Fe- Mg- and Al-rich metasediments 
201.65 1.850 3.718 1.446 0.75335* 8 2.48*0.03 

#2 #' (KooL1) KOOL2 250.15 34.28 9.068 11.42 1.15602*16 2.75*0.03 

229.90 119.2 149.1 2.337 0.81572* 5 3.39*0.04 
260.74 70.58 239.5 0.856 0.74263* 6 3.39*0.04 
203.04 117.6 169.1 2.028 0.78936* 3 3.01*0 .03 
197.41 60.04 218.3 0.799 0.74294* 4 3.68*0.04 

236.26 8.178 36.45 0.652 0.74641*11 5 .0b0 .07  
252.73 14.06 234.5 0.174 0.75662*12 31.7k0.53 
193.59 177.9 45.92 11.21 0.71155* 9 0.045*0.00 

293.35 13.91 6.820 6.048 0.96552*28 3.02*0.03 
240.06 167.0 13.75 40.69 2.32665*11 2.76*0.03 
197.45 104.9 8.478 42.63 2.66167*40 3.17k0.03 
200.61 116.0 3.782 133.6 5.8738* 24 2.68*0. 03 
261.84 2.556 3.465 2.140 0.73433*12 1.01*0.01 

- grani t ic  gneisses 

- mafic and dyke rocks 

- Fe- Mg- and Al-rich metasediments 

Jack Hills - Fe- and Al-rich metasediment 

Toodyay - grani t ic  gneisses 

# l o  (JH1) 258.24 28.42 39.65 2.094 0.80875* 6 3.56*0.04 

248.21 101.5 159.3 1.854 0.77307* 7 2.67k0.03 
253.61 95.31 167.3 1.657 0.76760* 3 2.77*0.03 
247.19 47.67 444.8 0.310 0.71664* 3 3.66*0.06 

b) 245.60 73.84 6.700 35.83 1.97719*29 2.46*0.02 

0.348 0.73683*62 8.09*0.24 
6.375 0.94324*13 2.62*0.03 1 254.76 24.60 8.088 9.096 1.05267*36 2.67*0.03 

Toodyay - Fe- Mg- and Al-rich metasediments 

240.35 0.281 30.11 0.027 0.71240*14 - 10.7*0.15 
252.42 0.365 3.042 
253.23 118.1 54.85 

Reported errors  are  2a mean. 
Weight of dissolved sample. 
Uncertainty is less than 1.OX. 
Corrected f o r  mass fractionation using 86Sr/88Sr = 0.1194. 
Model age calculated using present day bulk  Earth (UR) values of 



87Sr/86Sr=O. 7045 and 87Rb/86Sr=0.0827 (DePaolo and Wasserburg, 1976). 
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TABLE 3. 
Ini t ia l  ENd, fSm/Nd and model ages for the Western Gneiss Belt rocks") 

Sample Sm/Nd 

Koolanooka - Fe-, Mg- and Al-rich metasediments 

1; @k;] -0.4192 +1.00 * 1.45 3.17 f 0.05 3.41 0.05 3.26*0.0 
-0.0702 +0.03 * 0.52 3.25 0.21 3.97 0.10 3.26kO.O 

Quirading - granitic gneisses 
-0.4844 -0.02 * 1.77 3.25 * 0.07 3.45 f 0.06 3.25*0.0 
-0.4679 -2 .10 * 1.35 2.84 * 0.06 3.11 * 0.05 2.67*0.0 
-0.4900 -4.41 * 1.22 3.02 * 0.05 3.25 * 0.04 2.67kO.O 
-0.5408 -3.70 * 1.08 2.94 0.03 3.16 0.02 2.67*0.0 

Quirading - mafic and dyke rocks 
-0.3905 t4.57 * 1.13 2.80 * 0.04 3.12 * 0.03 3.25*0.0 
-0.2683 -0.97 * 1.00 3.39 0.08 3.68 * 0.06 3.25*0.0 
-0.3360 -5.58 * 0.46 0.70 0.05 1.50 * 0.04 0.045*0.00 

- Fe- , Mg- and Al-rich metasediments 
-0.3861 +1.55 * 2.11 3.11 0.13 3.37 * 0.11 3.26*0.0 
-0.3685 +0.45 * 1.17 3.21 * 0.04 3.47 * 0.04 3.26*0.0 
-0.4167 +2.15 1.54 3.06 * 0.06 3.32 f 0.05 3.26*0.0 
-0,3791 +0.51 1.33 3.21 0.06 3.46 0.05 3.26*0.0 
-0.4886 t4.08 * 1.69 2.94 0.05 3.18 * 0.05 3.26*0.0 

Jack Hills - Fe- and Al-rich metasediment 
#10 (JHl) -0.3957 -5.17 * 2.23 3.41 * 0.02 3.61 * 0.02 2.90k0.2 

Toodyay - granitic gneisses 

#12 [TY31] -0.5735 -6.23 * 1.02 3.09 f 0.02 3.28 0.02 2.67*0.0 

Toodyay - Fe- , Mg- and Al-rich metasediments 

#11 TY30 -0.5934 -4.70 1.22 2.98 * 0.03 3.18 * 0.03 2.67kO.O 

#17 TY2) -0.5446 t1.13 1.30 3.17 * 0.02 3.36 * 0.02 3.25*0.0 

TY17b) -0.3781 -0.06 * 1.07 3.27 * 0.03 3.51 0.02 3.26kO.O 
-0.5680 t1.10 * 1.35 3.19 * 0.01 3.37 * 0.01 3.26kO.O 

"'-0.3758 4.41 * 1.19 3.22 * 0.04 3.47 0.03 3.26hO.O 
-0.0145 -4.85 * 0.33 15.6 1.64 6.22 0.14 3.26*0.0 

TY1] -0.5272 +0.59 * 1.68 3.22 0.04 3.41 0.04 3.26hO.O 

- - - - -___________________________________- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
a) Reported errors are 2a mean. Model parameters calculated u s i n  present day 
bulk Earth (CHUR) values of 143Nd/144Nd = 0.511847 and 147Sm/144N f = 0.1967 
Jacobsen and Wasserburg, 1984) and present day depleted mantle values of 
143Nd/144Nd)DM = 0.512359 and (147Sm/144Nd)DM = 0.2136. 
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TABLE 4. 
REE analytical results ;VI ppw - 

Jack Hills Koolanooka Quirading 
#lo #1 #2 #5 

La 
Ce 
Nd 
Sm 
Eu 
Gd 

Yb 
Lu 

43.2 
81.6 
32.4 

6.18 
1.25 

4.36 
2.59 
2.83 
0.384 

- 

5.76 

7.96 
2.32 
2.27 
2.96 
3.96 
2.86 
2.97 
0.514 

13.7 
32.0 
63.6 
23.4 
4.43 
0.940 
4.25 
4.14 
2.53 
2.57 
0.397 

49.8 
86.7 
32.4 

6.09 
0.685 
4.29 
2.46 
0.876 
0.682 
0.108 



Figure Captions 

Figure 1. Location map 

Figure 2. REE patterns for Koolanooka and Jack Hills metapelites. 

Figure 3. REE patterns for Koolanooka and Quirading high-Mg-Al, low Ca, low alkali 

met asediments. 

Figure 4. T E i  versus T:$ model age diagram for the Western Gneiss Belt. 

Figure 5. Sm-Nd isochron diagram for the older gneisses of the Western Gneiss Belt. Mt. 

Narryer data from DeLaeter et al. [15], Milly Milly to Erong data from Fletcher et 

al. [16], Northham and Ringa data from McCulloch et al. [12]. 

Figure 6 .  Sm-Nd isochron diagram for the younger granitic rocks of the Western Gneiss 

Belt. Mortigup and Monday Hill data from McCulloch et al. [12]. Quirading and 

Toodyay data from this work. 

Figure 7. Sm-Nd isochron diagram of Western Gneiss Belt metasediments 

Figure 8. Rb-Sr isochron diagram of Western Gneiss Belt metasediments. 

Figure 9. Rb-Sr isochron diagram of the Western Gneiss belt. 
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